Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.031
Filtrar
1.
Mol Plant Microbe Interact ; 37(3): 250-263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416124

RESUMO

Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Ustilaginales , Ustilago , Virulência/genética , Ustilago/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zea mays/microbiologia
2.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037456

RESUMO

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Assuntos
Basidiomycota , Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ustilago/metabolismo , Proteínas Correpressoras/metabolismo , Carcinogênese , Proteínas Fúngicas/metabolismo
3.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016757

RESUMO

The BRCA2 tumor suppressor plays a critical role in homologous recombination by regulating RAD51, the eukaryotic homologous recombinase. We identified the BRCA2 homolog in a Basidiomycota yeast, Naganishia liquefaciens BRCA2 homologs are found in many Basidiomycota species but not in Ascomycota species. Naganishia BRCA2 (Brh2, for BRCA2 homolog) is about one-third the size of human BRCA2. Brh2 carries three potential BRC repeats with two oligonucleotide/oligosaccharide-binding domains. The homolog of DSS1, a small acidic protein serving as an essential partner of BRCA2 was also identified. The yeast two-hybrid assay shows the interaction of Brh2 with both Rad51 and Dss1. Unlike human BRCA2, Brh2 is not required for normal cell growth, whereas loss of Dss1 results in slow growth. The loss of Brh2 caused pronounced sensitivity to UV and ionizing radiation, and their HR ability, as assayed by gene-targeting efficiency, is compromised. These phenotypes are indistinguishable from those of the rad51 mutant, and the rad51 brh2 double mutant. Naganishia Brh2 is likely the BRCA2 ortholog that functions as an indispensable auxiliary factor for Rad51.


Assuntos
Basidiomycota , Proteínas de Saccharomyces cerevisiae , Ustilago , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/genética , Reparo do DNA , Proteínas Fúngicas/metabolismo , Ustilago/genética , Ustilago/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Proteína BRCA2/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 14(1): 6722, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872143

RESUMO

Ustilago maydis causes common smut in maize, which is characterized by tumor formation in aerial parts of maize. Tumors result from the de novo cell division of highly developed bundle sheath and subsequent cell enlargement. However, the molecular mechanisms underlying tumorigenesis are still largely unknown. Here, we characterize the U. maydis effector Sts2 (Small tumor on seedlings 2), which promotes the division of hyperplasia tumor cells. Upon infection, Sts2 is translocated into the maize cell nucleus, where it acts as a transcriptional activator, and the transactivation activity is crucial for its virulence function. Sts2 interacts with ZmNECAP1, a yet undescribed plant transcriptional activator, and it activates the expression of several leaf developmental regulators to potentiate tumor formation. On the contrary, fusion of a suppressive SRDX-motif to Sts2 causes dominant negative inhibition of tumor formation, underpinning the central role of Sts2 for tumorigenesis. Our results not only disclose the virulence mechanism of a tumorigenic effector, but also reveal the essential role of leaf developmental regulators in pathogen-induced tumor formation.


Assuntos
Doenças das Plantas , Ustilago , Tumores de Planta , Zea mays/metabolismo , Hiperplasia , Ustilago/metabolismo , Carcinogênese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834187

RESUMO

Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Esterificação , Zea mays/metabolismo , Pectinas/metabolismo , Ustilago/metabolismo , Parede Celular/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834371

RESUMO

Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Fatores de Transcrição/genética , Ustilago/genética , Filogenia
7.
New Phytol ; 240(5): 1976-1989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680042

RESUMO

Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Ustilago/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Virulência , Zea mays/microbiologia
8.
Mol Plant Pathol ; 24(9): 1063-1077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37434353

RESUMO

Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.


Assuntos
Basidiomycota , Ustilago , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos , Basidiomycota/metabolismo , Ustilago/genética , Ustilago/metabolismo , Lipídeos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
Methods Mol Biol ; 2690: 87-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450139

RESUMO

Protein-protein interactions play an essential role in host-pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes. Here we describe a detailed protocol to perform co-immunoprecipitation of effector-target protein complexes from plant extracts with an example of the Ustilago maydis/maize pathosystem for which we also provide a fungal protoplast transformation and maize seedling infection protocols.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Virulência , Interações Hospedeiro-Patógeno , Plântula/metabolismo , Zea mays/metabolismo , Proteínas Fúngicas/metabolismo
10.
Curr Biol ; 33(11): R458-R460, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279670

RESUMO

Djamei introduces the fungal pathogen (and culinary delicacy) Ustilago maydis.


Assuntos
Basidiomycota , Ustilago , Zea mays , Doenças das Plantas/microbiologia
11.
N Biotechnol ; 77: 30-39, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336283

RESUMO

In this work, we established an efficient process for the production of itaconate from the regionally sourced industrial side-stream molasses using Ustilago cynodontis and Ustilago maydis. While being relatively cheap and more environmentally friendly than refined sugars, there are some major challenges to overcome when working with molasses. Some of those challenges are a high nitrogen load, unknown impurities in the feedstock, and high amounts of ill-favoured carbon sources, such as sucrose or lactate. We could show that the activity of the sucrose-hydrolysing enzyme invertase plays a crucial role in the efficiency of the process and that the fructose utilisation differs between the two strains used in this work. Thus, with a higher invertase activity, the ability to convert fructose into the desired product itaconate, and an overall higher tolerance towards undesired substances in molasses, U. maydis is better equipped for the process on the alternative feedstock molasses than U. cynodontis. The established process with U. maydis reached competitive yields of up to 0.38 g g-1 and a titre of more than 37 g L-1. This shows that an efficient and cost-effective itaconate production process is generally feasible using U. maydis, which has the potential to greatly increase the sustainability of industrial itaconate production.


Assuntos
Ustilago , beta-Frutofuranosidase , Melaço , Succinatos
12.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298890

RESUMO

Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.


Assuntos
Basidiomycota , Ustilago , México , Fibras na Dieta
13.
DNA Repair (Amst) ; 127: 103511, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141696

RESUMO

BRC is a short evolutionarily conserved sequence motif generally arranged in multiple tandem repeats that is present as a defining feature in members of the BRCA2 tumor suppressor protein family. From crystallographic studies of a co-complex, the human BRC4 was found to form a structural element that interacts with RAD51, a key component in the DNA repair machinery directed by homologous recombination. The BRC is distinguished by two tetrameric sequence modules with characteristic hydrophobic residues separated by an intervening spacer region marked by certain highly conserved residues forming a hydrophobic surface for interaction with RAD51. It is present as a single copy in Brh2 of Ustilago maydis, the only reported example of a fungal BRCA2 ortholog. By comparative sequence analysis, examples of BRCA2 orthologs were identified in other fungal phyla, some of which featured multiple tandem repeats like those found in mammals. An expeditious biological assay system was developed for evaluating the two-tetramer module model and assessing the importance of particular conserved amino acid residues of BRC contributing to Brh2 functionality in DNA repair. This work was aided by the finding that the human BRC4 repeat could substitute completely for the endogenous BRC element in Brh2, while the human BRC5 repeat could not. In a survey of point mutations of certain residues, certain BRC mutant variants termed antimorphs were identified that caused a DNA repair phenotype more severe than the null.


Assuntos
Basidiomycota , Ustilago , Animais , Humanos , Rad51 Recombinase/metabolismo , Ligação Proteica , Ustilago/genética , Ustilago/metabolismo , Basidiomycota/metabolismo , Proteína BRCA2/genética , Mamíferos/metabolismo
14.
Mol Plant Pathol ; 24(7): 768-787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171083

RESUMO

Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψß-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure-function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.


Assuntos
Plumbaginaceae , Ustilaginales , Ustilago , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilaginales/metabolismo , Doenças das Plantas/microbiologia , Fungos/metabolismo , Zea mays/microbiologia
15.
J Exp Bot ; 74(15): 4736-4750, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37225161

RESUMO

Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.


Assuntos
Neoplasias , Ustilago , Doenças das Plantas/microbiologia , Zea mays/metabolismo , Ustilago/genética , Ustilago/metabolismo , Biotina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligases/metabolismo
16.
Appl Environ Microbiol ; 89(5): e0220822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37093016

RESUMO

Sporisorium scitamineum and Ustilago maydis are two fungal pathogens causing severe sugarcane and maize diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We showed recently that in the presence of exogenous glucose, the Pseudomonas sp. strain ST4 could block the fungal mating and display a strong disease suppression potency on S. scitamineum. With the aim of conferring strain ST4 the ability to metabolize sucrose in plants for glucose production, we identified a strong native promoter pSsrA in strain ST4 and additional promoter elements to facilitate translation and peptide translocation for the construction of a fusion gene encoding sucrose metabolism. The cscA gene encoding sucrose hydrolase from Pseudomonas protegens Pf-5 was fused to the promoter pSsrA, a translational coupler bicistronic design and a Tat signal peptide, which was then cloned into mini-Tn7 transposon. This synthetic gene cassette was integrated into the chromosome of strain ST4, and the resultant engineered strain ST4E was able to hydrolyze sucrose with high efficiency and displayed elevated inhibitory activity on the mating and virulence of S. scitamineum and U. maydis. The findings from this study provide a valuable device and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens. IMPORTANCE Sporisorium scitamineum and Ustilago maydis are typical dimorphic fungi causing severe sugarcane and maize smut diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We previously demonstrated that the biocontrol strain Pseudomonas sp. ST4 could block the fungal mating and displays a strong suppression potency on smut diseases, while it was unable to utilize the host-sourced sucrose for glucose production critical for antifungus efficiency. In this study, we constructed a high-expression gene cassette for minitransposon-mediated genome integration and sucrose hydrolysis in the bacterial periplasmic space. The resultant engineered strain ST4E was able to hydrolyze sucrose and inhibit the mating and hyphal growth of S. scitamineum and U. maydis. These findings provide a valuable tool and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens.


Assuntos
Basidiomycota , Saccharum , Ustilaginales , Ustilago , Ustilaginales/genética , Virulência , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Saccharum/genética , Saccharum/metabolismo , Saccharum/microbiologia , Ustilago/genética
17.
J Biotechnol ; 366: 72-84, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36948402

RESUMO

The COVID-19 pandemic has greatly impacted the global economy and health care systems, illustrating the urgent need for timely and inexpensive responses to pandemic threats in the form of vaccines and antigen tests. Currently, antigen testing is mostly conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an alternative ELISA approach using inexpensive, biogenic materials and permitting quick detection based on components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Cts1. As a unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or immobilization tag. Recent work has demonstrated that nanobodies are suitable target proteins. These proteins represent a very versatile alternative antibody format and can quickly be adapted to detect novel antigens by camelidae immunization or synthetic libraries. In this study, we exemplarily produced different mono- and bivalent SARS-CoV-2 nanobodies directed against the spike protein receptor binding domain (RBD) as Cts1 fusions and screened their antigen binding affinity in vitro and in vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface. This provides a solid base for future development of inexpensive antigen tests utilizing unconventionally secreted nanobodies as antigen trap and a matching ubiquitous and biogenic surface for immobilization.


Assuntos
COVID-19 , Quitinases , Anticorpos de Domínio Único , Ustilago , Humanos , Ustilago/genética , Ustilago/metabolismo , Quitina/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Quitinases/metabolismo
18.
PLoS One ; 18(3): e0281251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952474

RESUMO

The RNA subunit of telomerase is an essential component whose primary sequence and length are poorly conserved among eukaryotic organisms. The phytopathogen Ustilago maydis is a dimorphic fungus of the order Ustilaginales. We analyzed several species of Ustilaginales to computationally identify the TElomere RNA (TER) gene ter1. To confirm the identity of the TER gene, we disrupted the gene and characterized telomerase-negative mutants. Similar to catalytic TERT mutants, ter1Δ mutants exhibit phenotypes of growth delay, telomere shortening and low replicative potential. ter1-disrupted mutants were unable to infect maize seedlings in heterozygous crosses and showed defects such as cell cycle arrest and segregation failure. We concluded that ter1, which encodes the TER subunit of the telomerase of U. maydis, have similar and perhaps more extensive functions than trt1.


Assuntos
Telomerase , Ustilaginales , Ustilago , Animais , Telomerase/genética , Telomerase/metabolismo , Ustilaginales/genética , RNA/metabolismo , Estágios do Ciclo de Vida , Ustilago/genética , Ustilago/metabolismo
19.
Mol Plant Pathol ; 24(5): 495-509, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808861

RESUMO

Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.


Assuntos
Basidiomycota , Ustilago , Doenças das Plantas/microbiologia , Basidiomycota/metabolismo , Virulência , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
20.
J Agric Food Chem ; 71(2): 1122-1131, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597352

RESUMO

To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 µM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 µM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 µM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.


Assuntos
Basidiomycota , Ustilago , Animais , Camundongos , Humanos , Ustilago/genética , Fungos , Macrófagos , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...